Spring 2007 Edition

It's Not Greek to Me

by Bill Moller
Recently, I decided to take a class to learn Biblical Greek, the language in use when the original text of the New Testament was written. As I sat thinking about this undertaking, I remembered that one of the best ways to reinforce what one learns is to teach the material to someone else. What you are about to read is that effort. I invite you to follow along and discover the alphabet used in Biblical Greek.

I suspect any self respecting kindergartener might tell you that one needs to practice the alphabet before actually learning a language. Do you remember the worksheets used in elementary school - the kind with the bands of three horizontal lines? A letter was already printed at the beginning of each band and the idea was to copy the sample and repeat the process over and over until you filled the page. Seems simple now doesn't it. $\mathcal{A} \mathcal{A} \not A \mathcal{B} \mathcal{B} \mathcal{B} \ldots C \subset C \ldots$ Well, try that procedure and you discover how little your hand has learned since grade school.

My Basics of Biblical Greek workbook uses the same worksheets. Upon completing the copying of three pages of Greek letters, my left hand knew exactly what my right hand was doing and wanted to disown it. I'm a fairly coordinated person, but this exercise was quite embarrassing. The scribbled pages looked as if I had given my workbook to a four year old and asked her to do the assignment for me.

Despite the lack of precision in the irregular forms I reproduced, I had indeed learned how to recognize the letters of the Greek alphabet. With the help of electronic flashcards, I now knew how to pronounce them with reasonable accuracy, as well.

Having gained this basic level of confidence I've decided to try a slightly unorthodox way of teaching the letters to you. I hope you'll read on and enjoy the process.

Rather than confuse anyone with the differences between the upper and lower case letters, I thought we'd focus on the lower case for this lesson. Let's begin with the first letter of the Greek alphabet which is called Alpha (α). It's name may be Alpha, but it sounds the same as our letter "A" in the word "APPLE". So now you know what an Alpha (α) looks like and even what it sounds like. Pretty simple, right? So, just for fun, what if I spelled the word apple, as apple? (Notice the Alpha at the beginning or the word.) Would you know how to say it? Most likely you would. What if I spelled orange, as orange. Could you spot the Greek letter and pronounce it correctly? Hopefully, you could.

To help make this article a little more interesting than a kindergarten class about the $A B C$'s, what if I start replacing each English letter in the article with a Greek letter that I've just introduced? For example, if I chonged $\boldsymbol{\alpha} l l$ the "A"s in this sentence to Alpha, could you still read the sentence? What if we took the next letter in the Greek $\boldsymbol{\alpha}$ lph $\boldsymbol{\alpha}$ bet, which is colled Beta (β) and started replacing $\boldsymbol{\alpha} l l$ the "B"s $\boldsymbol{\alpha}$ s well. You would know the first two letters of the Greek $\boldsymbol{\alpha} \operatorname{lph} \boldsymbol{\alpha} \boldsymbol{\beta}$ et, α nd even though you don't know how to read Greek you would $\boldsymbol{\beta}$ egin to get $\boldsymbol{\alpha}$ ide $\boldsymbol{\alpha}$ of how to recognize and pronounce the Greek letters. Shall I proceed? Good!

Oh no! Here we are just two letters into the Greek α ph $\alpha \beta$ et and we're in trouble α lready - there's no "C" in the Greek alph $\alpha \beta$ et. Instead, it jumps around in comparison to English and includes α letter called Gamma (γ) which sounds like our letter "G". That's pretty easy; even if the order of the letters is α little different, we can still follow alon γ becouse the fourth and fifth letters fall riyht back in sequence with Delta (δ) $\alpha \mathrm{n} \delta$ Epsilon (ε). Now thin $\gamma \mathrm{s}$ ar startin γ to $\gamma \varepsilon \mathrm{t}$ intعrestin γ !
$\delta o n ’ t$ panic! Stay focuse δ. You can δ o this!
The next thre letters in the $\gamma \mathrm{r} \varepsilon \varepsilon \mathrm{k}$ alph $\alpha \beta \mathrm{t}$ ar ε very different from enylish because we have no δ irect

(Continued from page 1: Feature Article)

countcrpart. They ar\& Zeta (ζ), Eta (η) an δ Theta (θ). Zeta is pronounce $\delta \alpha$ s α slurrin γ of th ε two $\varepsilon n \gamma \operatorname{lish}$ letters "D" α n δ " Z ". Eta is pronounce δ th ε sam ε w αy as the "A" in the wor δ tame. Us ε caution here, however. You סon't want to confuse the Eta (η) with our letter "N". So, if I rewrot ε the earlier sentence it would look like this: Eta is pronounce δ the s $\eta \mathrm{m} \varepsilon$ w $\eta \mathrm{y}$ as the "A" in the wor δ t $\eta m \varepsilon$. Whew! $\delta i \delta$ you see wher ε I replace δ each long "A" soun δ with an Eta? The Theta is much $\varepsilon \alpha$ sicr to remember. It sounds like our "TH", α s in th ε word three. Or, should it $\beta \varepsilon$ written $\theta \mathrm{r} \varepsilon \varepsilon$?

Okay, time for a break. Just for a moment I'll return to normal English and review what we've covered:

Greek	Name	English	As in
α	Alpha	A	apple
β	Beta	B	boy
γ	Gamma	G	golf
δ	Delta	D	dog
ε	Epsilon	E	pen
ζ	Zeta	DZ	n/a
η	Eta	A	tame
θ	Theta	TH	three

Since the Greek alphabet has only 24 letters, we are one third of the way through. Is that cool, or what!

And now, back to the fun part...
Once α gain, $\gamma \mathrm{r} \varepsilon \varepsilon \mathrm{k}$ returns to letters familiar to our ε y ε. Next is Iota (1) an δ it soun δ s just lik ε our "I" in $\theta \varepsilon$ wor δ "PIN". α fter $\theta \alpha t$ comes Kappa (κ) which has $\theta \varepsilon$ $\operatorname{sam} \varepsilon$ soun δ s our ε nglish " K " or our har δ " C ". $\theta \varepsilon n ~ t t ' s$ on to $\theta \varepsilon \gamma \mathrm{r} \varepsilon \varepsilon \kappa$ letter Lambda (λ) which is pronounc $\varepsilon \delta$
 fo $\lambda \lambda$ ows. it is $\theta \varepsilon \lambda \varepsilon \mathrm{tt} \varepsilon \mathrm{r} \mathrm{Mu}(\mu)$ and has $\theta \varepsilon$ i $\delta \varepsilon n t ı \alpha \alpha \lambda$ soun δ of our $\lambda \varepsilon$ ttcr "M". μ oving on, w ε ко $\mu \varepsilon$ to $\theta \varepsilon \gamma r \varepsilon \varepsilon \kappa$ $\lambda \varepsilon \mathrm{ttcr} \mathrm{Nu}(v)$. $\delta o v$ 't $\lambda \varepsilon \mathrm{t}$ tt $\kappa 0 v f u s \varepsilon$ you. it $\mu \alpha y$ дook $\lambda \mathrm{t} \kappa \varepsilon$ our $\lambda \varepsilon$ tter "V", β ut it is $\alpha \kappa t u \alpha \lambda \lambda y$ s spi $\lambda \alpha$ r to our $\lambda \varepsilon$ tter "N".
$\alpha \mathrm{t} \theta \mathrm{ts}$ powt $\gamma \mathrm{r} \varepsilon \varepsilon \kappa$ ıvк $\lambda u \delta \varepsilon s \alpha v o \theta \varepsilon \mathrm{cr} \lambda \varepsilon \mathrm{ttcr} \theta \alpha \mathrm{t}$ is vot $\mathrm{w} \theta \mathrm{e}$ $\varepsilon v \gamma \lambda \mathrm{lsh} \alpha \lambda \mathrm{ph} \alpha \beta \varepsilon \mathrm{t}$. $\theta \mathrm{ls}$ ov ε is $\kappa \alpha \lambda \lambda \varepsilon \delta$ Xi (ξ). $\theta \varepsilon v \alpha \mu \varepsilon$ of $\theta \varepsilon \lambda \varepsilon$ tter is provouvc $\varepsilon \delta$ "ca-see", $\alpha v \delta$ it souv δ s $\lambda_{1 \kappa \varepsilon} \theta \varepsilon$ "X" w "AXIOM".

W ε 'v ε кov ε r $\varepsilon \delta \mu$ ost of $\theta \varepsilon \gamma \mathrm{r} \varepsilon \varepsilon \kappa \alpha \lambda \mathrm{ph} \alpha \beta \varepsilon \mathrm{t} \alpha \lambda \mathrm{r} \varepsilon \alpha \delta \mathrm{y}$. Just two μ or $\varepsilon \lambda \varepsilon$ tters $\alpha v \delta$ w $\varepsilon^{\prime} \lambda \lambda$ t $\alpha \kappa \varepsilon \alpha \beta$ r $\varepsilon \alpha \kappa$.
 $\kappa \alpha \lambda \lambda \varepsilon \delta \delta$ Omicron (o) $\alpha v \delta$ it souv δ s just λ וк ε our "O" w
 $(\pi), \beta u t \theta \varepsilon v \alpha \mu \varepsilon$ is v 't provouvc $\varepsilon \delta$ "PIE" α s w ε 'r ε us $\varepsilon \delta$ to. it is provouvce δ "PEA" $\alpha v \delta$ h α s $\theta \varepsilon$ s $\alpha \mu \varepsilon$ souv $\delta \alpha$ s $\theta \varepsilon$ $\varepsilon v \gamma \lambda \mathrm{lsh} \lambda \varepsilon t t \varepsilon r$ " P ".

Fantastic! Back to English for a moment. Sixteen Greek letters and no one has started calling me bad names, yet. Let's review the second third of the Greek alphabet:

Greek	Name	English	As in
1	Iota	I	pin
κ	Kappa	$\underset{\text { (or hard C) }}{\mathrm{K}}$	kite or cat
λ	Lambda	L	lost
μ	$\begin{gathered} \mathrm{Mu} \\ \text { (pronounced "mew") } \end{gathered}$	M	marbles
v	Nu	N	nutty
ξ	Xi (pronounced "ca-see")	n / a	axiom
0	Omicron	O	pot
π	$\begin{gathered} \text { Pi } \\ \text { (pronounced "pea") } \end{gathered}$	P	pen

We're reaching the home stretch. Just eight more Greek letters to go. So it's back to the fun stuff again.
 кovfusiv $\lambda \varepsilon$ tte $\rho \beta \varepsilon c \alpha u s \varepsilon$ it λ ooкs λ Iк $\varepsilon \alpha v \varepsilon v \gamma \lambda$ ısh $\lambda \varepsilon$ tt $\varepsilon \rho$ "P", β ut it is $\rho \varepsilon \alpha \lambda \lambda y \alpha \nu$ "R". μ oviv $\alpha \lambda o v \gamma$ w ε fiv $\delta \theta \varepsilon$ $\lambda \varepsilon \mathrm{tt} \varepsilon \rho$ Sigma (σ or ς) $\alpha v \delta$ it $\sigma o u v \delta \varsigma \lambda \mathrm{lk} \varepsilon$ our $\lambda \varepsilon \mathrm{tt} \varepsilon \rho$ " S ". Whev the Sigma $\alpha \pi \pi \varepsilon \alpha \rho \varsigma \alpha$ at $\theta \varepsilon \varepsilon v \delta$ of α wop δ it λ оooks $\lambda_{1 \kappa \varepsilon} \theta \mathrm{i} \varsigma(\varsigma), \alpha v \delta \lambda_{1 \kappa \varepsilon} \theta \mathrm{i} \varsigma(\sigma) \alpha v y w h \varepsilon \rho \varepsilon \varepsilon \lambda \sigma \varepsilon$.

At this point you are probably wondering what bizarre
(Continued from page 2: Feature Article)
form of torture I'll unfold next. Don't give up, yet. If you think reading this is hard, try writing it. We have just a handful of letters to go. Tough it out, folks!

Wı θ Sigma $\beta \varepsilon h ı v \delta$ us, w $\varepsilon \kappa \alpha v \alpha \delta v \alpha v \sigma \varepsilon$ to $\theta \varepsilon$ v $\varepsilon \xi \mathrm{t} \gamma \mathrm{r} \varepsilon \varepsilon \kappa$ $\lambda \varepsilon$ tter which $1 \varsigma \kappa \alpha \lambda \lambda \varepsilon \delta$ Tau (τ). к αv you $\gamma \mathbf{u} \varepsilon \sigma \varsigma$ wh $\alpha \tau$
 $\alpha v \sigma w \varepsilon \rho!\alpha v \delta, \theta \varepsilon \lambda \varepsilon \tau \tau \varepsilon \rho \alpha f \tau \varepsilon \rho$ Tau 1ς juб $\alpha \alpha \varsigma \varepsilon \alpha \sigma y$. $\tau \tau$ ıs Upsilon (v) $\alpha v \delta$ ıs ve ρy uvch $\lambda_{1 \kappa \varepsilon}$ ov $\varepsilon v \gamma \lambda_{1 \sigma h}$ $\lambda \varepsilon \tau \tau \varepsilon \rho$ " U ".
$\theta \varepsilon v \varepsilon \xi \tau \theta \rho \varepsilon \varepsilon \lambda \varepsilon \tau \tau \varepsilon \rho \varsigma \alpha \rho \varepsilon$ vo τv oup $\varepsilon v \gamma \lambda 1 \sigma h \alpha \lambda \pi h \alpha \beta \varepsilon \tau$, $\beta v t \alpha \rho \varepsilon$ vo $\tau \theta \tau \tau$ h $\alpha \rho \delta$ to $\lambda \varepsilon \alpha \rho v$. Fipб $\tau \varepsilon$ h $\alpha v \varepsilon \operatorname{Phi}(\varphi)$. $\alpha \varsigma$ you каv $\mu \mu \gamma \downarrow v \varepsilon \theta \varepsilon$ Phi $\sigma o u v \delta$ is $\lambda_{\text {Iк }}$ oup " F " or "PH" $v \varepsilon \varepsilon v \gamma \lambda \imath \sigma h . \theta \varepsilon \lambda \varepsilon \tau \tau \varepsilon \rho \alpha \varphi \tau \varepsilon \rho$ Phi is $\alpha \beta \tau \tau$ h $\alpha \rho \delta \varepsilon \rho$. $\imath \tau 1 \varsigma \kappa \alpha \lambda \lambda \varepsilon \delta \operatorname{Chi}(\chi) \alpha v \delta \sigma o v v \delta \varsigma$ а $\lambda ı \tau \tau \lambda \varepsilon \lambda_{1} k \varepsilon \alpha \kappa \alpha \tau$
 $\lambda \mathrm{ov} \delta \mathrm{h} \sigma \varsigma \varsigma . \mu \mathrm{v}$. $\mathrm{v} \mathrm{\gamma}$ то $\theta \varepsilon$ v $\varepsilon \xi \tau$ то $\lambda \alpha \sigma \tau \lambda \varepsilon \tau \tau \varepsilon \rho$ ıv $\theta \mathrm{e} \gamma \mathrm{r} \varepsilon \varepsilon \mathrm{k}$
 со $\mu \beta v \alpha \tau$ iov оч ои $\lambda \varepsilon \tau \tau \varepsilon \rho \varsigma$ " P " $\alpha v \delta$ "S", $\alpha v \delta i \varsigma ~ \sigma \mu \downarrow \lambda \alpha \rho$
 $\alpha \tau \tau \varepsilon v \tau 10 v$ - "PSST".
$\varphi เ v \alpha \lambda \lambda y$, w ε ко $\mu \varepsilon$ то $\theta \varepsilon \lambda \alpha \sigma \tau \lambda \varepsilon \tau \tau \varepsilon \rho$. $\mu о \sigma \tau \pi \varepsilon о \pi \lambda \varepsilon$
甲rou. $\theta \varepsilon \lambda \varepsilon \tau \tau \varepsilon \rho$ ıऽ ка $\lambda \lambda \varepsilon \delta$ Omega (ω), $\alpha v \delta \imath \tau \sigma 0 u v \delta \varsigma$ jvбт $\lambda_{1 \kappa \varepsilon} \theta \varepsilon$ "O" v " "OPEN".

Hoorah! You made it through all 24 letters in the Greek alphabet. But let's review the last eight before concluding.

Greek	Name	English	As in
ρ	Rho	R	real
σ or ς	Sigma	S (or a sof C)	silver or cement τ
Tau	T	today	
\boldsymbol{v}	Upsilon	U	cute
φ	Phi	F or PH	first
χ	Chi	n / a	a cat hissing
ψ	Psi	PS	psst or lips
ω	Omega	O	open

Congratulations! A weaker person would have given up by now, but you stuck it out. Which means you are either my mother or a very interested learner. I hope you actually picked up on the various letters of the Greek alphabet. It isn't all that difficult to learn the letters. But may I remind you that Greek isn't just English with different letters. What we did was to provide a strategy for learning to recognize the letters of the Greek alphabet and beginning to understand how they are pronounced. We did not use any actual Greek words (unless it was coincidental). The challenge occurs when one begins to study the grammar. Real Biblical Greek has capital letters as well as the lower case letters I used. Add to that the accent marks, diphthongs, noun systems, verb systems, participles and the complications increase. I'll leave those lessons to someone better qualified to teach that material.

To wrap things up, let me leave you with a passage from Scripture (Romans $1: 7 \mathrm{~b}$) in "real" Greek - it is my wish for you. Try to recognize the letters and then use the table below to translate the words.

$\chi \alpha \rho \iota \varsigma ~ v \mu i v ~ к \alpha \iota ~ \varepsilon \iota \rho \eta v \eta ~ \alpha л о ~ \theta \varepsilon о v ~ \pi \alpha \tau \rho о \varsigma ~ \eta \mu \omega v$

к人ı кирıоv ıךооv $\chi \rho \iota \sigma \tau 0 \cup$

$\chi \alpha \rho ı \varsigma=$ grace	$\pi \alpha \tau \rho o s=$ Father
$v \mu \nu v=$ to you	$\eta \mu \omega \nu=$ our
$\kappa \alpha \downarrow=$ and	кирıоу $=$ Lord
$\varepsilon \iota \rho \eta \sim \eta=$ peace	
$\alpha \pi \mathrm{o}=$ from	χ ¢ıбtov $=$ Christ
$\theta \varepsilon o v=$ God	

See if you can translate this last word on your own.

$\alpha \mu \eta v$

Basics of Biblical Greek Grammar, Second Edition
Copyright 1993, 2003 by William D. Mounce
Zondervan, Grand Rapids, Michigan 49530
http://www.Teknia.com
http://www.GreekBible.com
http://BibleGreekVpod.com

ио!10 Nииә6oう

- Conferences, Seminars \& Concerts -

Donald Miller
May 3-5
Leadnow Conference
McLean Bible Church
McLean, VA
(703) 790-5590
www.leadnowconferences.com
Larry Crabb
May 22-24
Spiritual Formation Forum
Gordon-Conwell Seminary
South Hamilton, MA
(978) 468-7111
www.gordonconwell.edu
Chip Ingram
May 25-28
National Singles Retreat
The Cove
Billy Graham Training Center
Ashville, NC
(800) 950-2092
www.thecove.org
Damaris Carbaugh (concert)
June 3
Calvary Baptist Church
New York, NY
(212) 975-1070
www.cbenyc.org
David Wilcox (concert)
June 16
Music at the Mission
West Milford, NJ
(973) 728-4201
www.musicatthemission.org

John Ortberg
June 30 - July 3
Christian Life Conference
Montreat Conference Center
Montreat, NC
(800) 572-2257
www.montreat.org
Tony Campolo
July 1
Ocean City Tabernacle
Ocean City, NJ
(609) 399-1915
www.octabernacle.org
Kings Brass (concert)
July 14
Fishkill Baptist Church
Fishkill, NY
845.896.9386
www.fishkillbaptist.org

Craig Detweiler

July 18-20
Faith in Film / Reel Spirituality
Glenn Eyrie Christian Conferences
Colorado Spring, CO
(800) 944-4536
www.gleneyrie.org

Leonard Sweet

July 22
Ocean City Tabernacle
Ocean City, NJ
(609) 399-1915
www.octabernacle.org

Glandion Carney

\& James Bryan Smith
July 28
Pinehurst United Methodist Church
Pinehurst, North Carolina
(910) 215-4559
www.pinehurstumc.org
Howard Hendricks
\& Henry Blackaby
July 29 - August 3
Sandy Cove
Northeast, MD
(800) 234-2683
www.sandycove.org
Michael Card (concert)
September 15
Wallenpaupack High School
Hawley, PA
www.michaelcard.com
Walk Thru The Bible (NT)
September 15
Special All Day Seminar
Ocean City Tabernacle
Ocean City, NJ
(609) 399-1915
www.octabernacle.org
Ron Hutchcraft
September 21-23
The Cove
Billy Graham Training Center
Ashville, NC
(800) 950-2092
www.thecove.org

